Computable Limit Models
Авторы: | Alexander N. Gavryushkin |
Аннотация: | In the paper we construct a complete theory having exactly 6 countable models up to isomorphism, such that there are two limits over a powerful type models, one of which has a computable presentation and the other does not. |
Ключевые слова: | computable model, small theory, prime model, limit model, Rudin-Keisler ordering |
УДК: | 510.53+510.67 |
Литература: |
1. Gavryushkin,A., Computable Models of Ehrenfeucht Theories, Ph.D. thesis, Novosibirsk, 2009. 2. Goncharov,S., Constructive models of ℵ1-categorical theories, Mat. Zametki, 23, 885–889, 1978. 3. Khisamiev,N.,CriterionforConstructivizabilityofaDirectSumofCyclicp-groups, Izvestiya Akademii Nauk Kazakhskoi SSR. Seriya Fiziko-Matematicheskaya, 86, 1, 51–55, 1981. 4. Khoussainov,B., Nies,A., Shore,R., Computable Models of Theories with Few Models, Notre Dame Journal of Formal Logic, 38, 2, 165–178, 1997. 5. Nies,A.,ANewSpectrum ofRecursiveModels, Notre Dame Journal of Formal Logic, 40, 3, 307–314, 1999. 6. Sudoplatov,S., Complete theories with finitely many countable models, Algebra and Logic, 43, 1, 62–69, 2004. |