Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU В теории дискретных функций одним из объектов исследования являются гиперфункции — функции, заданные на конечном множестве A и принимающие в качестве своих значений все непустые подмножества множества A. Для гиперфункций специальным образом определяется суперпозиция. Множества, содержащие все функции-проекции и замкнутые относительно суперпозиции, называются клонами. Клон называется максимальным, если единственным клоном, его содержащим и не совпадающим с ним, является клон всех гиперфункций. Множество гиперфункций называется полным, если оно содержится только в клоне всех гиперфункций. Множество гиперфункций называется базисом, если оно является полным множеством, но при удалении хотя бы одной гиперфункции это свойство нарушается. В работе рассматриваются гиперфункции на двухэлементном множестве. Известно (В. В. Тарасов), что для такого множества число максимальных клонов равно 9. Для рассматриваемых гиперфункций приведена классификация по принадлежности к максимальным клонам. По этой классификации множество всех гиперфункций разбивается на 119 классов эквивалентности. С использованием данного разбиения оцениваются мощности всех возможных базисов и подсчитывается число различных типов базисов одинаковой мощности. При этом два базиса считаются разными по типу, если хотя бы для одной гиперфункции некоторого базиса не найдется эквивалентной в другом базисе. Показано, что базисы имеют мощности от 1 до 7, для мощности 1 существует только один тип базиса, для мощности 2 существует 581 тип базиса, для мощности 3 — 19 299, для мощности 4 — 58 974, для мощности 5 — 27 857, для мощности 6 — 2316, и для мощности 7 — 35 различных типов базиса.
В теории дискретных функций одним из объектов исследования являются гиперфункции — функции, заданные на конечном множестве A и принимающие в качестве своих значений все непустые подмножества множества A. Для гиперфункций специальным образом определяется суперпозиция. Множества, содержащие все функции-проекции и замкнутые относительно суперпозиции, называются клонами. Клон называется максимальным, если единственным клоном, его содержащим и не совпадающим с ним, является клон всех гиперфункций. Множество гиперфункций называется полным, если оно содержится только в клоне всех гиперфункций. Множество гиперфункций называется базисом, если оно является полным множеством, но при удалении хотя бы одной гиперфункции это свойство нарушается. В работе рассматриваются гиперфункции на двухэлементном множестве. Известно (В. В. Тарасов), что для такого множества число максимальных клонов равно 9. Для рассматриваемых гиперфункций приведена классификация по принадлежности к максимальным клонам. По этой классификации множество всех гиперфункций разбивается на 119 классов эквивалентности. С использованием данного разбиения оцениваются мощности всех возможных базисов и подсчитывается число различных типов базисов одинаковой мощности. При этом два базиса считаются разными по типу, если хотя бы для одной гиперфункции некоторого базиса не найдется эквивалентной в другом базисе. Показано, что базисы имеют мощности от 1 до 7, для мощности 1 существует только один тип базиса, для мощности 2 существует 581 тип базиса, для мощности 3 — 19 299, для мощности 4 — 58 974, для мощности 5 — 27 857, для мощности 6 — 2316, и для мощности 7 — 35 различных типов базиса.
Ключевые слова RU
Литература RU 1. Тарасов В. В. Критерий полноты для не всюду определенных функций алгебры логики / В. В. Тарасов // Проблемы кибернетики. - М. : Наука, 1975. - Вып. 30. - С. 319-325. 2. Яблонский С. В. О суперпозициях функций алгебры логики / С. В. Яблонский // Мат. сб. - 1952. - Т. 30,№ 2(72), С. 329-348. 3. Krnic L. Types of bases in the algebra of logic / L. Krnic // Glasnik matematicko-fizicki i astronomski. Ser 2. - 1965. - Vol. 20. - P. 23-32. 4. Classification and basis enumerations in many-valued logics / M. Miyakawa, I. Stojmenovic, D. Lau, I. Rosenberg // Proc. 17th International Symposium on Multi-Valued logic. - Boston, 1987. - P. 151-160. 5. Classification and basis enumerations of the algebras for partial functions / M. Miyakawa, I. Stojmenovic, D. Lau, I. Rosenberg // Proc. 19th International Symposium on Multi-Valued logic. - Rostock, 1989. - P. 8-13. 6. Lau D. Classification and enumerations of bases in Pk (2)/ D.Lau,M. Miyakawa// Asian-European Journal of Mathematics. - 2008. - Vol. 01, N 02. - P. 255-282. 7. Stojmenovic I. Classification of Рэ and the enumeration of base of Рэ /I. Stojmenovic // Rev. of Res. 14, Fat. of Sci., Math. Ser., Novi Sad. - 1984. - P. 73-80. 8. Miyakawa M., Rosenberg I., Stojmenovic I. Classification of three-valued logical functions preserving 0 / Miyakawa M., Rosenberg I., StojmenovicI. //Discrete Applied Mathematics, 28 (1990) P. 231-249.
Название EN
Авторы EN
Аннотация EN Hyperfunctions are functions from a finite set A to set of all nonempty subsets of A. Superposition of hyperfunctions is defined in a special way. Clones are sets containing all projections and closed under superposition. Clone is a maximal clone if the only clone containing it is a clone of all hyperfunctions. Set of hyperfunctions is called complete set if the only clone containing it is a clone of all hyperfunctions. Set of hyperfunctions is a basis if it is a complete set and not any of its subsetsisacompleteset. This paper considers hyperfunctions on a two-elements set. As Tarasov V. showed there are 9 maximal clones on this set. Hyperfunctions on two-elements set classified by their membership in maximal clones. All hyperfunctions are divided into 119 equivalence classes. Based on this classification all kinds of bases are described. Two bases are of different kinds if there is a function in one basis with no equivalent function in the other one. We show that bases of hyperfunctions can have cardinality from 1 to 7: there is only one kind of basis with cardinality 1, 581 with cardinality 2, 19 299 with cardinality 3, 58 974 with cardinality 4, 27 857 with cardinality 5, 2316 with cardinality 6 and 35 with cardinality 7.
Hyperfunctions are functions from a finite set A to set of all nonempty subsets of A. Superposition of hyperfunctions is defined in a special way. Clones are sets containing all projections and closed under superposition. Clone is a maximal clone if the only clone containing it is a clone of all hyperfunctions. Set of hyperfunctions is called complete set if the only clone containing it is a clone of all hyperfunctions. Set of hyperfunctions is a basis if it is a complete set and not any of its subsetsisacompleteset. This paper considers hyperfunctions on a two-elements set. As Tarasov V. showed there are 9 maximal clones on this set. Hyperfunctions on two-elements set classified by their membership in maximal clones. All hyperfunctions are divided into 119 equivalence classes. Based on this classification all kinds of bases are described. Two bases are of different kinds if there is a function in one basis with no equivalent function in the other one. We show that bases of hyperfunctions can have cardinality from 1 to 7: there is only one kind of basis with cardinality 1, 581 with cardinality 2, 19 299 with cardinality 3, 58 974 with cardinality 4, 27 857 with cardinality 5, 2316 with cardinality 6 and 35 with cardinality 7.
Ключевые слова EN
Литература EN 1. Tarasov V.V. Completeness Criterion for Partial Logic Functions (in Russian). Problemy Kibernetiki, Moscow, Nauka,1975, vol. 30, pp. 319-325. 2. Yablonskij S.V. On the Superpositions of Logic Functions (in Russian). Mat. Sbornik, 1952, vol. 30, no. 2(72), pp. 329-348. 3. Krnic L. Types of Bases in the Algebra of Logic. Glasnik Matematicko-Fizicki i Astronomski, ser 2, 1965, vol. 20, pp. 23-32. 4. Miyakawa M., Stojmenovic I., Lau D., Rosenberg I. Classification and basis enumerations in many-valued logics. Proc. 17th International Symposium on Multi-Valued logic. Boston, May 1987, p. 151-160. 5. Miyakawa M., Stojmenovic I., Lau D., Rosenberg I. Classification and basis enumerations of the algebras for partial functions. Proc. 19th International Symposium on Multi-Valued logic, Rostock, 1989, pp. 8-13. 6. Lau D., Miyakawa M. Classification and enumerations of bases in Pk (2). Asian-European Journal of Mathematics, June 2008, vol. 1, no. 2, pp. 255-282. 7. Stojmenovic I. Classification of Рэ and the enumeration of base of Рэ, Rev. of Res. 14, Fat. Of Sci., Math. Ser., Novi Sad, 1984, p. 73-80. 8. Miyakawa M., Rosenberg I., Stojmenovic I. Classification of Three-valued logical functions preserving 0. Discrete Applied Mathematics, 1990, vol. 28, pp. 231-249.