Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU Исследуются дифференциальные включения с импульсными воздействиями. Основное внимание уделено динамическим объектам с импульсным позиционным управлением, под которым понимается некоторый абстрактный оператор с функцией Дирака («бегущим импульсом»), сосредоточенной в каждый момент времени. «Бегущий импульс» как обобщенная функция смысла не имеет. Его формализация заключается в дискретизации корректирующих импульсных воздействий на систему, соответствующих направленному множеству разбиений интервала управления. Реакцией системы на такое управление являются разрывные движения, которые образую сеть «ломаных Эйлера». В задачах управления особое место занимает ситуация, когда в результате очередной коррекции фазовая точка объекта оказывается на некотором заданном многообразии. Тогда при сокращении времени между коррекциями в систему вносится эффект типа «скольжения», и сеть «ломаных Эйлера» называется импульсно-скользящим режимом. В практическом использовании процедуры импульсного управления неизбежно возникает задача о замене импульса Дирака последовательностью ее непрерывных аппроксимаций дельтаобразными функциями. В данной статье для дифференциальных включений с позиционным импульсным управлением в правой части исследованы два типа предельного перехода на дельтаобразных функциях, приводящих к «ломаным Эйлера» и импульсно-скользящим режимам Один из них приводит к известным условиям допустимости скачка в моменты импульсных воздействий, а другой — определяет величину импульсной коррекции непосредственно по значению заранее заданной интенсивности импульса в зависимости от времени и состояния объекта. Исследования опираются на непрерывные однозначные аппроксимации Иосиды многозначных отображений и известные факты для дифференциальных уравнений с импульсами.
Исследуются дифференциальные включения с импульсными воздействиями. Основное внимание уделено динамическим объектам с импульсным позиционным управлением, под которым понимается некоторый абстрактный оператор с функцией Дирака («бегущим импульсом»), сосредоточенной в каждый момент времени. «Бегущий импульс» как обобщенная функция смысла не имеет. Его формализация заключается в дискретизации корректирующих импульсных воздействий на систему, соответствующих направленному множеству разбиений интервала управления. Реакцией системы на такое управление являются разрывные движения, которые образую сеть «ломаных Эйлера». В задачах управления особое место занимает ситуация, когда в результате очередной коррекции фазовая точка объекта оказывается на некотором заданном многообразии. Тогда при сокращении времени между коррекциями в систему вносится эффект типа «скольжения», и сеть «ломаных Эйлера» называется импульсно-скользящим режимом. В практическом использовании процедуры импульсного управления неизбежно возникает задача о замене импульса Дирака последовательностью ее непрерывных аппроксимаций дельтаобразными функциями. В данной статье для дифференциальных включений с позиционным импульсным управлением в правой части исследованы два типа предельного перехода на дельтаобразных функциях, приводящих к «ломаным Эйлера» и импульсно-скользящим режимам Один из них приводит к известным условиям допустимости скачка в моменты импульсных воздействий, а другой — определяет величину импульсной коррекции непосредственно по значению заранее заданной интенсивности импульса в зависимости от времени и состояния объекта. Исследования опираются на непрерывные однозначные аппроксимации Иосиды многозначных отображений и известные факты для дифференциальных уравнений с импульсами.
Ключевые слова RU
Литература RU 1. Завалищин С. Т. Динамические системы с импульсной структурой / С. Т. Завалищин, А. Н. Оесекин, С. Е. Дрозденко. - Свердловск : Сред.-Урал. кн. изд-во, 1983. - 112 с. 2. Завалищин С. Т. Импульсно-скользящие режимы в нелинейных динамических системах / С. Т. Завалищин, А. Н. Сесекин // Дифференц. уравнения. -1983. - Т. 19, № 5. - С. 790-799. 3. Завалищин С. Т. Импульсные процессы. Модели и приложения / С. Т. Завалищин, А. Н. Сесекин. - М. : Наука, 1991. - 225 с. 4. Красовский Н. Н. Позиционные дифференциальные игры / Н. Н. Красовский, А. И. Субботин. - М. : Наука, 1974. 5. Завалищин С. Т. Об особых решениях в задачах оптимизации динамических систем с квадратичным критерием качества / С. Т. Завалищин, A. Н. Сесекин // Дифференц. уравнения. - 1975. - Т. 11. № 4. - С. 665-671. 6. Завалищин С. Т. К вопросу синтеза импульсного управления в задаче оптимизации динамических систем с квадратичным критерием качества / С. Т. Завалищин, А. Н. Сесекин // Некоторые способы аналитического конструирования импульсных регуляторов. - Екатеринбург: - Урал. науч. центр АН СССР, 1979. - С. 3-8. 7. Дыхта В. А. Оптимальное импульсное управление с приложениями / B. А. Дыхта, О. Н. Самсонюк. - М. : ФИЗМАТЛИТ, 2003. - 256 с. 8. Кротов В. Ф. Методы и задачи оптимального управления / В. Ф. Кротов, В. И. Гурман. - М. : Наука, 1973. - 446 с. 9. Финогенко И. А. О дифференциальных включениях с позиционными разрывными и импульсными управлениями / И. А. Финогенко, Д. В. Пономарев // Тр. Ин-та математики и механики УрО РАН. - 2013. - Т. 19, № 1. - С. 284-299. 10. Мильман В. Д. Об устойчивости движения при наличии толчков / В. Д. Мильман, А. Д. Мышкис // Сиб. мат. журн. -1960. -Т. 1,2, - С. 233-237. 11. Самойленко А. М. Дифференциальные уравнения с импульсным воздействием / А. М. Самойленко, Н. А. Пестерюк. - Киев : Вища Школа, 1987. - 288 с. 12. Миллер Б. М. Оптимизация динамических систем с импульсными управлениями / Б. М. Миллер, Е. Я. Рубинович. - М. : Наука, 2005. - 429 с. 13. Сесекин А. Н. Динамические системы с нелинейной импульсной структурой / А. Н. Сесекин // Тр. Ин-та математики и механики УрО РАН. - 2000. - Т. 6, № 1. - С. 497-510. 14. Kurzweil J. Generalized ordinary differential equations / J. Kurzweil // Czechosl. Math. Journ. - 1958. - Vol. 8, N 3. - P. 360-588. 15. Красовский Н. Н. Теория управления движением / Н. Н. Красовский/ - М. : Наука, 1968. - 475 с. 16. Филиппов А. Ф. Дифференциальные уравнения с разрывной правой частью / А. Ф. Филиппов. - М. : Наука, 1985. - 224 с. 17. Финогенко И. А. О непрерывных аппроксимациях и правосторонних решениях дифференциальных уравнений с кусочно непрерывной правой частью / И. А. Финогенко // Дифференц. уравнения. - 2005. - Т. 41, № 5. - С. 647-655. 18. Финогенко И. А. Об условии правой липшицевости для дифференциальных уравнений с кусочно непрерывными правыми частями / И. А. Финогенко // Дифференц. уравнения. - 2003. - Т. 39, № 8. - С. 1068-1075. 19. Барбашин Е. А. Функции Ляпунова / Е. А. Барбашин. - М. : Наука, 1970. - 240 с. 20. Обуховский В. В. Введение в теорию многозначных отображений и дифференциальных включений / В. В. Обуховский, Ю. Г. Борисович, Б. Д. Гельман, А. Д. Мышкис. - М. : КомКнига, 2005. - 256 с.
Название EN
Авторы EN
Аннотация EN Differential inclusions with pulse influences are investigated. The basic attention is given to dynamic objects with pulse positional control, which is understood as some abstract operator with Dirac's function („a running pulse"), concentrated in each moment of time. „Running pulse" as the generalized function has no sense. Its formalization consists in digitization of correcting pulse influences on the system, corresponding to directed set of partitions for an interval of control . Reaction of system to such control are discontinuous movements, which are a network „ Euler's broken lines". In problems of control the special place is occupied the situation when as a result of the next correction the phase point of object appears on some surface. Then at reduction of time between corrections in system the effect such as „slidings" is brought and the network Euler's broken lines" refers to as a pulse sliding mode. In practical use of procedure of pulse control inevitably there is a problem on replacement of Dirac's pulse to sequence of its continuous approximations of delta-like function. In given article for differential inclusions with positional pulse control in the right-hand part are considered two types of limiting transition on delta-like functions resulting to Euler's broken lines" and to pulse sliding modes One of them leads to known conditions of an admissibility jump at the moment of pulse influences, and another - determines size of pulse correction directly on value of preset intensity of a pulse depending on time and a condition of object. Researches base on continuous Yosida's approximations of multiple-valued maps and the known facts for the differential equations with pulses.
Differential inclusions with pulse influences are investigated. The basic attention is given to dynamic objects with pulse positional control, which is understood as some abstract operator with Dirac's function („a running pulse"), concentrated in each moment of time. „Running pulse" as the generalized function has no sense. Its formalization consists in digitization of correcting pulse influences on the system, corresponding to directed set of partitions for an interval of control . Reaction of system to such control are discontinuous movements, which are a network „ Euler's broken lines". In problems of control the special place is occupied the situation when as a result of the next correction the phase point of object appears on some surface. Then at reduction of time between corrections in system the effect such as „slidings" is brought and the network Euler's broken lines" refers to as a pulse sliding mode. In practical use of procedure of pulse control inevitably there is a problem on replacement of Dirac's pulse to sequence of its continuous approximations of delta-like function. In given article for differential inclusions with positional pulse control in the right-hand part are considered two types of limiting transition on delta-like functions resulting to Euler's broken lines" and to pulse sliding modes One of them leads to known conditions of an admissibility jump at the moment of pulse influences, and another - determines size of pulse correction directly on value of preset intensity of a pulse depending on time and a condition of object. Researches base on continuous Yosida's approximations of multiple-valued maps and the known facts for the differential equations with pulses.
Ключевые слова EN
Литература EN 1. Zavalishchin S.T., Sesekin A.N., Drozdenko S.E. Dinamicheskiye Sistemy s Impul-snoy Strukturoy [Dynamic systems with pulse structure]. Sverdlovsk, Sred.-Ural. kn. izd-vo, 1983. 112 p. 2. Zavalishchin S.T., Sesekin A.N. Pulse-Sliding Modes in Nonliinear Dynamic Sys¬tems [Impulsno-skolzyashchie rezhimy v nelineynykh dinamicheskikh sistemakh]. Differential Equations [Differentsialnyye uravneniya], 1983, vol. 19, no. 5, pp. 790-799. 3. Zavalishchin S.T., Sesekin A.N. Impulsnyye Protsessy. Modeli i Prilozheniya [Pulse processes. Models and applications]. Moskow, Nauka, 1991. 225 p. 4. Krasovskiy N.N., Subbotin A.I. Pozitsionnyye Differentsialnyye igry [Positional differential games]. Moskow, Nauka, 1974. 5. Zavalishchin S.T., Sesekin A.N. On Particular Solutions in Problems of Optimization of Dynamic Systems with Square Quality Citerion [Ob osobykh resheniyakh v zadachakh optimizatsii dinamicheskikh sistem s kvadratichnym kriteriyem kach-estva]. Differential Equations [Differentsialnyye uravneniya], 1975, vol. 11, no. 4, pp. 665-671. 6. Zavalishchin S.T., Sesekin A.N. On Synthesis Question of Pulse control in problem of optimization of dynamic systems with square quality citerion [K voprosu sinteza impulsnogo upravleniya v zadache optimizatsii dinamicheskikh sistem s kvadratichnym kriteriyem kachestva]. Some Methods for Analytic Design of Pulse Regulators [Nekotoryye sposoby analiticheskogo konstruirovaniya impulsnykh regulyatorov], Yekaterinburg, Uralskiy nauchnyy tsentr AN SSSR, 1979,pp. 3-8. 7. Dykhta V.A., Samsonyuk O.N. Optimalnoye Impulsnoye Upravleniye s Prilozheniyami [Optimal pulse control with applications]. Moskow, FIZMATLIT, 2003. 256 p. 8. Krotov V.F., Gurman V.I. Metody i Zadachi Optimalnogo Upravleniya [Methods and problems of optimal control]. Moskow, Nauka, 1973. 446 p. 9. Finogenko I.A., Ponomarev D.V. On Differential Inclusions with Positional Discontinuous and Pulse Control [O differentsialnykh vklyucheniyakh s pozitsionnymi razryvnymi i impulsnymi upravleniyami]. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, vol. 19, no. 1, pp. 284-299. 10. Milman V.D., Myshkis A.D. On Stability of Motion with Pushes [Ob ustoychivosti dvizheniya pri nalichii tolchkov]. Sib. Math. Jour [Sibirskiy matematitcheskiy zhurnal], 1960, vol. 1, 2, pp. 233-237. 11. Samoylenko A.M., Pesteryuk N.A. Differentsialnyye Uravneniya s Impulsnym Vozdeystviyem [Differential equations with pulse effects]. Kiyev, Vishcha Shkola, 1987. 288 p. 12. Miller B.M., Rubinovich Ye.Ya. Optimizatsiya Dinamicheskikh Sistem s Impulsnymi Upravleniyami [Optimization of dynamic systems with pulse controls]. Moskow, Nauka, 2005. 429 p. 13. Sesekin A. N. Dynamic Systems with Nonlinear pulse Structure [Dinamicheskiye sistemy s nelineynoy impulsnoy strukturoy]. Trudy Instituta matematiki imekhanikiUrO RAN, 2000, vol. 6, no. 1, pp. 497-510. 14. Kurzweil J. Generalized Ordinary Differential Equations. Czechosl. Math. Journ., 1958, vol. 8, no. 3, pp. 360-588. 15. Krasovskiy N. N. Teoriya upravleniya dvizheniyem [Control theory of motion]. Moskow, Nauka, 1968. 475 p. 16. Filippov A.F. Differentsialnyye Uravneniya s Razryvnoy Pravoy Chastyu [Differential equations with discontinuous right-hand side]. Moskow, Nauka, 1985. 224 p. 17. Finogenko I.A. On Continuous Approximations and Right-Side Solutions of Differential Equations with Discontinuous Right-Hand Side [O nepreryvnykh approksimatsiyakh i pravostoronnikh resheniyakh differentsialnykh uravneniy s kusochno nepreryvnoy pravoy chastyu]. Differential Equations [Differentsialnyye uravneniya], 2005, vol. 41, no. 5, pp. 647-655. 18. Finogenko I.A. On Right-Side Lipschitz Condition for Differential Equations with Discontinuous Right-Hand Sides [Ob uslovii pravoy lipshitsevosti dlya differentsialnykh uravneniy s kusochno nepreryvnymi pravymi chastyami]. Differential Equations [Differentsialnyye uravneniya], 2003, vol. 39, no. 8, pp. 1068-1075. 19. Barbashin E.A. Funktsii Lyapunova [Lyapunov functions]. Moskow, Nauka, 1970. 240 p. 20. Obukhovskiy V.V., Borisovich Yu.G., Gelman B.D., Myshkis A.D. Vvedeniye v teoriyu mnogoznachnykh otobrazheniy i differentsialnykh vklyucheniy [Introduction to theory of multivalued maps and differential inclusions]. Moskow,KomKniga, 2005. 256 p.