Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU В классе гладких управляющих воздействий исследуется задача оптимального управления системой полулинейных гиперболических уравнений первого порядка. Рассматривается случай, когда функция, входящая в правую часть системы, определяется из управляемой системы обыкновенных дифференциальных уравнений. Решение начально-краевой задачи понимается в обобщенном смысле как решение интегральной системы уравнений, построенной на характеристиках исходной гиперболической системы [4]. Управляющие воздействия стеснены поточечными (амплитудными) ограничениями. Такие задачи возникают при моделировании ряда процессов химической технологии (расчет пусковых режимов химико-технологических объектов, переходов от одного стационарного режима к другому) [3]. С использованием методики [1] получено необходимое условие оптимальности вариационного типа в классе допустимых гладких управлений для полулинейных гиперболических систем первого порядка [2]. Для такого рода задач неприменимы методы оптимального управления, основанные на использовании принципа максимума Л.С. Понтрягина, его следствий и модификаций. Эти методы ориентированы на классы разрывных управлений. Предлагаемый подход основан на использовании специальных вариаций. Проварьированное управление обладает следующими свойствами: 1) оно является гладким; 2) область его значений определяется областью значений исходного управления. Таким образом, обеспечивается гладкость варьируемых управлений и выполнение ограничений. Предложена основанная на необходимом условии схема метода улучшения допустимого управления и проведена численная реализация на тестовом примере. Приведены результаты расчетов, представлены графики решений. Проведенный численный эксперимент показал, что предложенный метод улучшения гладких управляющих воздействий, которые удовлетворяют поточечным ограничениям, может эффективно применяться для решения данного класса задач.
В классе гладких управляющих воздействий исследуется задача оптимального управления системой полулинейных гиперболических уравнений первого порядка. Рассматривается случай, когда функция, входящая в правую часть системы, определяется из управляемой системы обыкновенных дифференциальных уравнений. Решение начально-краевой задачи понимается в обобщенном смысле как решение интегральной системы уравнений, построенной на характеристиках исходной гиперболической системы [4]. Управляющие воздействия стеснены поточечными (амплитудными) ограничениями. Такие задачи возникают при моделировании ряда процессов химической технологии (расчет пусковых режимов химико-технологических объектов, переходов от одного стационарного режима к другому) [3].
С использованием методики [1] получено необходимое условие оптимальности вариационного типа в классе допустимых гладких управлений для полулинейных гиперболических систем первого порядка [2]. Для такого рода задач неприменимы методы оптимального управления, основанные на использовании принципа максимума Л.С. Понтрягина, его следствий и модификаций. Эти методы ориентированы на классы разрывных управлений. Предлагаемый подход основан на использовании специальных вариаций. Проварьированное управление обладает следующими свойствами: 1) оно является гладким; 2) область его значений определяется областью значений исходного управления. Таким образом, обеспечивается гладкость варьируемых управлений и выполнение ограничений. Предложена основанная на необходимом условии схема метода улучшения допустимого управления и проведена численная реализация на тестовом примере. Приведены результаты расчетов, представлены графики решений. Проведенный численный эксперимент показал, что предложенный метод улучшения гладких управляющих воздействий, которые удовлетворяют поточечным ограничениям, может эффективно применяться для решения данного класса задач.
Ключевые слова RU
Литература RU 1. Аргучинцев А. В. Оптимальное управление гиперболическими системами / А. В. Аргучинцев. – М. : Физматлит, 2007. – 165 с. 2. Аргучинцев А. В. Оптимизация одного класса гиперболических систем с гладкими управлениями / А. В. Аргучинцев, В. П. Поплевко // Изв. вузов. Математика. – 2009. – № 7. – С. 71-76. 3. Демиденко Н. Д. Моделирование и оптимизация систем с распределенными параметрами / Н. Д. Демиденко, В. И. Потапов, Ю. И. Шокин. – Новосибирск : Наука, 1983. – 271 с. 4. Рождественский Б. Л. Системы квазилинейных уравнений и их приложения к газовой динамике / Б. Л. Рождественский, Н. Н. Яненко. – М. : Наука, 1978.– 686 с.
Название EN
Авторы EN
Аннотация EN At the article an optimal control problem by a first order system of semi-linear hyperbolic equations in the class of smooth control function is studied. A function at the right-hand side of the system is determined by a control system of ordinary differential equations. The initial-boundary value problem equivalent the system of integral equations on the characteristics of the hyperbolic system [4] (generalized solution). Control functions are satisfied the pointwise constraints. Such problems arise in modeling of chemical technology processes [3]. We obtain necessary optimality conditions of variational type by using the procedure [1] in the class of admissible smooth controls for the first order semi-linear hyperbolic systems [2]. An optimal control methods based on the maximum principle of Pontryagin do not use for such problems. These methods are focused on classes of discontinuous control functions. The proposed approach is based on the use of special variations which provide smooth control function and satisfaction the pointwise constraints. The condition of optimality is proved, and a scheme of iterative methods is proposed. The numerical experiment is carried out. Numerical results are presented by graphics of solutions. The numerical experiments show that the proposed method of improving the smooth control functions can be effectively used to solve this class of problems.
At the article an optimal control problem by a first order system of semi-linear hyperbolic equations in the class of smooth control function is studied. A function at the right-hand side of the system is determined by a control system of ordinary differential equations. The initial-boundary value problem equivalent the system of integral equations on the characteristics of the hyperbolic system [4] (generalized solution). Control functions are satisfied the pointwise constraints. Such problems arise in modeling of chemical technology processes [3]. We obtain necessary optimality conditions of variational type by using the procedure [1] in the class of admissible smooth controls for the first order semi-linear hyperbolic systems [2]. An optimal control methods based on the maximum principle of Pontryagin do not use for such problems. These methods are focused on classes of discontinuous control functions. The proposed approach is based on the use of special variations which provide smooth control function and satisfaction the pointwise constraints. The condition of optimality is proved, and a scheme of iterative methods is proposed. The numerical experiment is carried out. Numerical results are presented by graphics of solutions. The numerical experiments show that the proposed method of improving the smooth control functions can be effectively used to solve this class of problems.
Ключевые слова EN
Литература EN 1. Arguchintsev A.V. Optimal control by hyperbolic systems (in Russian). Moscow, Fizmatlit, 2007. 165 p. 2. Arguchintsev A.V., Poplevko V.P. Optimization by a class of hyperbolic system with smooth controls (in Russian). Izvestiya Vuzov. Matematika, 2009, no 7, pp. 71–76. 3. Demidenko N.D., Potapov V.I., Shokin U.I. Modeling and optimization of systems with distributed parameter (in Russian). Novosibirsk, Nauka, 1983. 271 p. 4. Rozhdestvenskiy B.L., Yanenko N.N. System of quasi-linear equations and their applications to gas dynamics (in Russian). Moscow, Nauka, 1978. 686 p.