Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU Введены новые классы функций, обобщающие хорошо известные классы p-валентных функций, введенных ранее Т. Умезавой. Введены новые классы p-валентных функций, возникающих при применении формальных дифференциальных операторов и установлены достаточные условия принадлежности к ним. Также найдены определенные соотношения между этими классами.
Введены новые классы функций, обобщающие хорошо известные классы p-валентных функций, введенных ранее Т. Умезавой. Введены новые классы p-валентных функций, возникающих при применении формальных дифференциальных операторов и установлены достаточные условия принадлежности к ним. Также найдены определенные соотношения между этими классами.
Ключевые слова RU
Литература RU
Название EN
Авторы EN
Аннотация EN The theory of analytic functions and more specific p-valent functions, is one of the most fascinating topics in one complex variable. There are many remarkable theorems dealing with extremal problems for a class of p-valent functions on the unit disk U. Recently, many researchers have shown great interests in the study of differential operator. The objective of this paper is to define a new generalized derivative operator of p-valent analytic functions of fractional power in the open unit disk U denoted by Dm,bλ1λ2 p,αf(z). This operator generalized some well-known operators studied earlier, we mention some of them in the present paper. Motivated by the generalized derivative operator Dm,bλ1λ2 p,αf(z) we introduce and investigate two new subclasses Sm,bλ1,λ2,p,α(μ,ν) and TSm,bλ1,λ2,p,α(μ,ν), which are subclasses of starlike p-valent analytic functions of fractional power with positive coefficients and starlike p-valent analytic functions of fractional power with negative coefficients, respectively. In addition, a sufficient condition for functions f ∈ Σp,α to be in the class Sm,bλ1,λ2,p,α(μ,ν) and a necessary and sufficient condition for functions f ∈ Tp,α will be obtained. Some corollaries are also pointed out. Moreover, we determine the extreme points of functions belong to the class TSm,bλ1,λ2,p,α(μ,ν).
The theory of analytic functions and more specific p-valent functions, is one of the most fascinating topics in one complex variable. There are many remarkable theorems dealing with extremal problems for a class of p-valent functions on the unit disk U. Recently, many researchers have shown great interests in the study of differential operator. The objective of this paper is to define a new generalized derivative operator of p-valent analytic functions of fractional power in the open unit disk U denoted by Dm,bλ1λ2 p,αf(z). This operator generalized some well-known operators studied earlier, we mention some of them in the present paper. Motivated by the generalized derivative operator Dm,bλ1λ2 p,αf(z) we introduce and investigate two new subclasses Sm,bλ1,λ2,p,α(μ,ν) and TSm,bλ1,λ2,p,α(μ,ν), which are subclasses of starlike p-valent analytic functions of fractional power with positive coefficients and starlike p-valent analytic functions of fractional power with negative coefficients, respectively. In addition, a sufficient condition for functions f ∈ Σp,α to be in the class Sm,bλ1,λ2,p,α(μ,ν) and a necessary and sufficient condition for functions f ∈ Tp,α will be obtained. Some corollaries are also pointed out. Moreover, we determine the extreme points of functions belong to the class TSm,bλ1,λ2,p,α(μ,ν).
Ключевые слова EN
Литература EN 1. Al-Oboudi F.M. On univalent functions defined by a generalized Salagean operator.Int. J. Math. Math. Sci., 2004, no 25-28, pp. 1429-1436. 2. C´at´as A. On a certain differential sandwich theorem a ssociated with a newgeneralized derivative operator. General Mathematics, 2009, vol. 17, no. 4, pp.83-95. 3. Cho N.E. Certain classes of p-valent analytic functions. International Journal ofMathematics and Mathematical Sciences, 1993, vol. 16, pp. 319-328. 4. Choi J.H. On certain subclasses of multivalent functions associated with a familyof linear operators. Advances in Pure Mathematics, 2011, vol. 1, pp. 228-234. 5. Darus M., Ibrahim R.W. Multivalent functions based on a linear operator. MiskolcMathematical Notes, 2010, vol. 11, no. 1, pp. 43-52. 6. El-Ashwah R.M. Majorization Properties for Subclass of Analytic p-ValentFunctions Defined by the Generalized Hypergeometric Function. Tamsui OxfordJournal of Information and Mathematical Sciences, 2012, vol. 28, no. 4, pp.395-405. 7. Flett T.M. The dual of an inequality of Hardy and Littlewood and some relatedinequalities. Journal of Mathematical Analysis and Applications, 1972, vol. 38, pp.746-765. 8. Ghanim F., Darus M. Some results of p-valent meromorphic functions defined bya linear operator. Far East J. Math. Sci., 2010, vol. 44, no. 2, pp. 155-165. 9. Kumar S., Taneja H., Ravichandran V. Classes multivalent functions definedby dziok-srivastava linear operator and multiplier transformations. KyungpookMathematical Journal, 2006, vol. 46, pp. 97-109. 10. MacGregor T.H. Functions whose derivative has a positive real part. Transactionsof the American Mathematical Society, 1962, vol. 104, pp. 532-537. 11. Salagean G.S. Subclasses of univalent functions. Proceedings of the Complexanalysis-fifth Romanian-Finnish seminar, Part 1, Bucharest, 1013, 1983, pp.362-372. 12. Umezawa T. Multivalently close-to-convex functions. Proceedings of the AmericanMathematical Society, 1957, vol. 8, pp. 869-874. 13. Uralegaddi B.A., Somanatha C. Certain classes of univalent functions. In. H. M.Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, 1992,pp. 371-374.