Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU In this paper, the author examines the properties of interior variations and indicates how to use them in order to formulate the necessary condition of optimality (in the form of maximum principle) for optimal control problems in the class of smooth and bounded functions with fixed end-points.
In this paper, the author examines the properties of interior variations and indicates how to use them in order to formulate the necessary condition of optimality (in the form of maximum principle) for optimal control problems in the class of smooth and bounded functions with fixed end-points.
Ключевые слова RU
Литература RU 1. Vasiliev O. V. Optimization methods / O. V. Vasiliev. — World Federation Publishers Company, Atlanta, GA, 1996. 2. VasilievaO. Interior variations in dynamic optimization problems / O.Vasilieva// Optimization. — 2008. — Vol. 57. — P. 807–825. 3. Letnikov A.V. Kurs variatzionnogo ischisleniya [Course on variational calculus]/ A.V.Letnikov. —Moscow Imperial Technical College [in Russian],1981. 4. Alekseev V. M. Optimal’noe upravlenie [Optimal Control] / V. M. Alekseev, V.M.Tikhomirov,S.V.Fomin. —Moscow: Nauka [in Russian],1979. 5. KalmanR.E.Contributions to the theory of optimal control/ KalmanR.E.// Bolet in de la Sociedad Matem´atica Mexicana. — 1960. — Vol. 2. — P. 102–119. 6. Vasiliev O. V., Arguchintsev A. V., 1999, Metody optimizacii v zadachah i uprazhneniyah [Optimization methods: problems and exercises] / O. V. Vasiliev, A.V.Arguchintsev. —Moscow:Fizmatlit[inRussian],1999.
Название EN
Авторы EN
Аннотация EN In this paper, the author examines the properties of interior variations and indicates how to use them in order to formulate the necessary condition of optimality (in the form of maximum principle) for optimal control problems in the class of smooth and bounded functions with fixed end-points.
Ключевые слова EN
Литература EN