Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU В заметке получены достаточные условия разрешимости системы Леонтьева. Для этого использованы теория псевдообращений линейных операторов и методы исследования вырожденных дифференциальных уравнений.
В заметке получены достаточные условия разрешимости системы Леонтьева. Для этого использованы теория псевдообращений линейных операторов и методы исследования вырожденных дифференциальных уравнений.
Ключевые слова RU
Литература RU 1. Cидоров, Н. А. O применении некоторых результатов теории ветвления прирешении дифференциальных уравнений с вырождением/ Н. А. Cидоров, О. А.Романова//Dифференц. ур-ния. – 1983. – Т.19, вып. 9. – С. 1516–1526. 2. Cидоров, Н. А. Дифференциально-разностные уравнения с фредгольмовым опе-ратором при главной части / Н. А. Cидоров, О. А. Романова// ИзвестияИркутского государственного университета. – 2007. – Т.1. – С.254–266 3. Брычев, С.В. Исследование задачи Коши для вырожденных линейных системобыкновенных дифференциальных уравнений: дис. ... канд. физ.-мат. наук / С.В. Брычев. – Екатеринбург, 2000. – 97 с. 4. Бурлачко, И. В. Алгоритм решения задачи Коши для вырожденных линейныхсистем обыкновенных дифференциальных уравнений с постоянными коэффи-циентами / И. В. Бурлачко, Г. А. Свиридюк // Журнал вычислительнойматематики и математической физики. –. 2003. –. Т. 43, вып. 11. – С. 1677–1683. 5. Вайнберг, М.М. Теория ветвления решений нелинейных уравнений / М.М.Вайнберг, В.А. Треногин. – М. : Наука, 1969. 6. Гантмахер, Ф.Р. Теория матриц / Ф. Р. Гантмахер. – М. : Наука, 1988. 7. Nashed, M. Z. Jeneralized Inverses and Application/ M.Z. Nashed. – N.Y., 1976. 8. Леонтьев, В. В. Межотраслевая экономика/ В.В. Леонтьев. – М.: Экономика,1997. 9. Орлова, И. В. Исследования и методы решения блочных алгебро-дифференциальных систем индексов 1 и 2 : дис. ... канд. физ. - мат. наук/ И. В.Орлова. – Иркутск, 2007. – 110 с.
Название EN
Авторы EN
Аннотация EN The sufficient conditions for solvability of Leontiev system are obtained. The pseudoinverse operator theory and the investigation methods of degenerated equations are used.
The sufficient conditions for solvability of Leontiev system are obtained. The pseudoinverse operator theory and the investigation methods of degenerated equations are used.
Ключевые слова EN
Литература EN