Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU В этой заметке найден ряд новых соотношений для комбинаторных чисел, возникших ранее в неявном виде при перечислении идеалов нильпотентного кольца матриц над конечным полем (Г.П. Егорычев и В.М. Левчук, 2001), а также числа пар порождающих проективной специальной линейной группы размерности 2 и группы Судзуки над конечными полями характеристики 2 (Н.М. Сучков и Д.П. Приходько, 2001). Эти результаты получены с помощью метода коэффициентов Егорычева интегрального представления и вычисления комбинаторных сумм (множество правил вывода, лемма о полноте), развитого им к концу 1970 годов. По ходу изложения поставлено несколько проблемных вопросов, и намечена перспектива дальнейших исследований.
В этой заметке найден ряд новых соотношений для комбинаторных чисел, возникших ранее в неявном виде при перечислении идеалов нильпотентного кольца матриц над конечным полем (Г.П. Егорычев и В.М. Левчук, 2001), а также числа пар порождающих проективной специальной линейной группы размерности 2 и группы Судзуки над конечными полями характеристики 2 (Н.М. Сучков и Д.П. Приходько, 2001). Эти результаты получены с помощью метода коэффициентов Егорычева интегрального представления и вычисления комбинаторных сумм (множество правил вывода, лемма о полноте), развитого им к концу 1970 годов. По ходу изложения поставлено несколько проблемных вопросов, и намечена перспектива дальнейших исследований.
Ключевые слова RU
Литература RU 1. Егорычев Г. П. Ранги факторов нижнего центрального ряда свободной разрешимой группы / Г. П. Егорычев // Сиб. мат. журн. – 1972. – T. 13. – C. 708-713. English transl. in Siberian Math. J. 13,1972. 2. Егорычев Г. П. Интегральные представления и вычисление комбинаторных сумм / Г. П. Егорычев. – Новосибирск : Наука, 1977. – 285 c.; English: Transl. of Math. Monographs 59, AMS, 1984, 2-nd Ed. in 1989. 3. Егорычев Г. П. Перечислительные проблемы для групп и алгебр лиева типа / Г. П. Егорычев, В. М. Левчук // Докл. РАН. – 1993. – T. 330. – C. 464–467. 4. Почекутов Д. Ю. Диагонали рядов Лорана рациональных функций / Д. Ю. Почекутов // Сиб. мат. журн. – 2009. – T. 50, № 6. – C. 1370–1383. 5. Рыко В. С. Дискретное преобразование Меллина / В. С. Рыко. – Вологда, 1979. – 7 с. – Деп. в ВИНИТИ АН СССР 16.01.79, № 199–79. 6. Cучков Н. М. О числе пар порождающих групп L2 (2m) и Sz22k+1, / Н. М. Cучков, Д. М. Приходько // Сиб. мат. журн. – 2001. – Т. 42, № 5. – C. 1162–1167. 7. Barry P. On integer-sequence-based constructions of generalized Pascal triangles / P. Barry // Journal of Integer Sequences. – 2006. – Vol. 9, article 06.2.4. – P. 1–34. 8. Bona M. On divisibility of Narayana numbers by primes / M. Bona, B. E. Sagan. – arXiv:math/05055382. – V. 1 [math.CO] 18 May 2005. – P. 1–5. 9. Egorychev G. P. Method coefficients: an algebraic characterization and recent applications / G. P. Egorychev // Advances in combinatorial mathematics : Proceedings of the Waterloo Workshop in computer algebra 2008, devoted to the70th birthday Georgy Egorychev / eds. I. S. Kotsireas, E. V. Zima. – Springer, 2009. – P. 1–30. 10. Egorychev G. P. Decomposition and Group Theoretic Characterization of pairs of inverse relations of the Riordan type / G. P. Egorychev, E. V. Zima // Acta Applicandae Mathematicae. – 2005. – Vol. 85. – P. 93–109. 11. Egorychev G. P. Enumeration in the Chevalley algebras / G. P. Egorychev, V. M. Levchuk // ACM SIGSAM Bulletin. – 2001. – Vol. 35. – P. 20–34. 12. Erfanian A. On the Growth Sequences of PSp(2m, q), / A. Erfanian, R. Rezaei // Inter. Jornal. – 2007. – Vol. 1. – P. 51–62. 13. Titchmarsh E. C. The theory of the Riemann Zeta-Function / E. C. Titchmarsh. – Oxford, 1951. (Рус. пер.: Е. К. Титчмарш. Теория дзета-функции Римана. ИЛ, 1953).
Название EN
Авторы EN
Аннотация EN In this article were obtained several new results for the combinatorial numbers which arised earlier in an implicit kind by an enumeration of ideals of nilpotent ring of matrices over finite ring (G.P. Egorychev, V.M. Levchuk, 2001) and also the numbers of pairs of generating projective special linear groups of dimension 2 and the Suzuki groups over finite fields of the characteristic 2 (N.M. Suchkov and D.P. Prihodko, 2001). These results were obtained by authors with the help of the Egorychev’s method of integral representation and computing of combinatorial sums (the set of inference rules and the Completeness Lemma) developed by him to the end 1970. Some new problems are put and planned prospect of the further researches.
In this article were obtained several new results for the combinatorial numbers which arised earlier in an implicit kind by an enumeration of ideals of nilpotent ring of matrices over finite ring (G.P. Egorychev, V.M. Levchuk, 2001) and also the numbers of pairs of generating projective special linear groups of dimension 2 and the Suzuki groups over finite fields of the characteristic 2 (N.M. Suchkov and D.P. Prihodko, 2001). These results were obtained by authors with the help of the Egorychev’s method of integral representation and computing of combinatorial sums (the set of inference rules and the Completeness Lemma) developed by him to the end 1970. Some new problems are put and planned prospect of the further researches.
Ключевые слова EN
Литература EN