Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU В статье рассматривается конечная по времени дифференциальная игра с m игроками с ненулевой суммой. Состояния игроков управляются системами с граничными условиями, (а не системами с начальными условиями). В конце игры мы понимаем ситуацию равновесия, которая достигается применением равновесной стратегии управления. Целью работы является разработка обоснованного подходящего алгоритма для поиска равновесного управления. Для этого используется техника оптимального управления.
В статье рассматривается конечная по времени дифференциальная игра с m игроками с ненулевой суммой. Состояния игроков управляются системами с граничными условиями, (а не системами с начальными условиями). В конце игры мы понимаем ситуацию равновесия, которая достигается применением равновесной стратегии управления. Целью работы является разработка обоснованного подходящего алгоритма для поиска равновесного управления. Для этого используется техника оптимального управления.
Ключевые слова RU
Литература RU
Название EN
Авторы EN
Аннотация EN The present paper deals with a finite-time differential game of m players with nonzero sum. It should be emphasized that the players’ states are governed by boundary value ODE systems (rather than initial value systems). By the end of the game we understand an equilibrium situation, which is attained by applying an equlibrium control strategy. So our purpose is to design a well-founded suitable algorithm for equilibrium control search. In order to fulfil this task we shall make use of optimal control techniques.
The present paper deals with a finite-time differential game of m players with nonzero sum. It should be emphasized that the players’ states are governed by boundary value ODE systems (rather than initial value systems). By the end of the game we understand an equilibrium situation, which is attained by applying an equlibrium control strategy. So our purpose is to design a well-founded suitable algorithm for equilibrium control search. In order to fulfil this task we shall make use of optimal control techniques.
Ключевые слова EN
Литература EN 1. Basar, T. and G.J.Olsder, Dynamic Noncooperative Game Theory, SIAM, Philadelphia, PA (1998). 2. Belenkii, V., Volkonskii, V. and S.Ivanov, Iterative Methods in the Game Theory and Programming, Nauka, Moscow, USSR (1974) [in Russian]. 3. Bryson, A.E. and Y.C.Ho, Applied Optimal Control, John Wiley and Sons, New York, NY (1975). 4. Fedorenko, R.P., Approximate Solution of Optimal Control Problem, Nauka, Moscow, USSR (1978) [in Russian]. 5. Nash, J.F., “Noncooperative Games”, Annals of Mathematics, Vol.54, No.2, pp.286-295 (1951). 6. Vasiliev, O.V., Beltyukov, N.B. and V.A.Terletzky, Optimization Algorithms for Dynamic Systems Based on the Maximum Principle, in “Surveys on Cybernetics: Models and Analysis of Large-Scale Systems”, Nauka, Moscow, USSR, pp. 17-38 (1991) [in Russian]. 7. Vasiliev, O.V, Optimization Methods, World Federation Publishers, Inc., Atlanta, GA (1996). 8. Vasiliev, O.V. and O.O.Vasilieva, “Inverse Problems and Equilibrium Strategies in the Theory of Optimal Control”, Zurich University Press, Switzerland (1997). 9. Vasilieva, O.O. and K.Mizukami, “One Method for Equilibrium Control Searching in Convex Differential Games”, Proceedings of SICE, Kanazawa, Japan, pp.1453-1456 (1993). 10. Vasilieva, O.O. and K.Mizukami. “Convergence of Improve Successive Approximation Method for Optimal Control Problem”, Proceedings of the 1st ASCC, Tokyo, Japan, Vol.2, pp.901-904 (1994). 11. Vasilieva, O.O. and K.Mizukami. “Optimal Control for Boundary Value Problem”, Russian Mathematics, Vol.38, pp.31-39 (1994). 12. Vasilieva, O. O. and K.Mizukami “Dynamical Processes Described by a Boundary Value Problem: Necessary Conditions of Optimality and Methods of Solving, Journal of Computer and Systems Sciences International, Vol.39, pp.90-95 (2000). 13. Vasilieva, O.O. and O.V.Vasiliev. “Search of Equilibrium Controls in Differential m-person Game”, Russian Mathematics, Vol.44, pp.7-12 (2000).