Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU Системы неоднородной структуры широко распространены на практике и в настоящее время являются предметом активного изучения представителями различных научных школ и направлений. К ним традиционно относят системы с переменной структурой, дискретно-непрерывные, логико-динамические, гибридные и гетерогенные динамические системы. В данной работе рассматриваются системы неоднородной сетевой структуры. Для их моделирования и исследования применяется иерархический подход: строится двухуровневая модель, нижний уровень которой представлен различными управляемыми дифференциальными системами однородной структуры, а верхний — сетью операторов, обеспечивающей целенаправленное взаимодействие непрерывных подсистем. Эту модель можно рассматривать как дальнейшее развитие дискретно-непрерывной модели, предложенной и исследованной в ряде работ авторов. Ставится задача оптимального управления, и приводятся достаточные условия оптимальности управления — аналоги известных достаточных условий оптимальности Кротова, в которых фигурируют разрешающие функции типа Кротова для каждого уровня. На основе этих условий и принципа локализации строится метод монотонного итерационного улучшения с линейными по состоянию функциями типа Кротова. Привлечение вторых производных по переменным управления в его структуре позволяет учесть овражистую структуру функционала. Построенный метод также как и модель имеет двухуровневую структуру. На нижнем уровне фигурирует традиционная сопряженная система дифференциальных уравнений относительно коэффициентов разрешающих функций, тогда как на верхнем уровне сопряженные переменные определяются из линейной алгебраической системы уравнений. В качестве примера рассматривается оптимизация водоохранных мероприятий в бассейне реки на упрощенной модели типа дерева операторов. Прототипом служит нижнее течение реки Селенги. Для этой задачи строится двухуровневая сетевая модель и применяется предложенный алгоритм. Приводятся результаты расчетов.
Системы неоднородной структуры широко распространены на практике и в настоящее время являются предметом активного изучения представителями различных научных школ и направлений. К ним традиционно относят системы с переменной структурой, дискретно-непрерывные, логико-динамические, гибридные и гетерогенные динамические системы. В данной работе рассматриваются системы неоднородной сетевой структуры. Для их моделирования и исследования применяется иерархический подход: строится двухуровневая модель, нижний уровень которой представлен различными управляемыми дифференциальными системами однородной структуры, а верхний — сетью операторов, обеспечивающей целенаправленное взаимодействие непрерывных подсистем. Эту модель можно рассматривать как дальнейшее развитие дискретно-непрерывной модели, предложенной и исследованной в ряде работ авторов. Ставится задача оптимального управления, и приводятся достаточные условия оптимальности управления — аналоги известных достаточных условий оптимальности Кротова, в которых фигурируют разрешающие функции типа Кротова для каждого уровня.
Ключевые слова RU
Литература RU 1. Математические модели и методы управления крупномасштабным водным объектом / Ю. А. Анохин [и др.]. – Новосибирск: Наука, 1987. 2. Бортаковский А. С. Достаточные условия оптимальности управления детерминированными логико-динамическими системами / А. С. Бортаковский // Информатика. Сер. Автоматизация проектирования. – 1992. – Вып. 2–3. – С. 72–79. 3. Васильев С. Н. Теория и применение логико-управляемых систем / С. Н. Васильев // Тр. 2-й Междунар. конф. «Идентификация систем и задачи управления» (SICPRO’03). – 2003. – С. 23–52. 4. Гурман В. И. Оптимизация дискретных систем : учеб. пособие / В. И. Гурман. – Иркутск: Изд-во Иркут. ун-та, 1976. – 121 с. 5. Гурман В. И. Достаточные условия оптимальности в иерархических моделях неоднородных систем / В. И. Гурман, И. В. Расина // Автоматика и телемеханика. – 2013. – №12. – С. 15–30. 6. Гурман В. И. К теории оптимальных дискретных процессов / В. И. Гурман // Автоматика и телемеханика. – 1973. – №6. – С. 53–58. 7. Гурман В. И. О практических приложениях достаточных условий сильного относительного минимума / В. И. Гурман, И. В. Расина // Автоматика и телемеханика. – 1979. – №10. – С. 12–18. 8. Гурман В. И. Дискретно-непрерывные представления импульсных решений управляемых систем / В. И. Гурман, И. В. Расина // Автоматика и телемеханика. – 2012. – №8. – С. 16–29. 9. Гурман В. И. Моделирование водоохранных мероприятий в бассейне реки / В. И. Гурман, О. В. Фесько, И. В. Расина // Вестн. БГУ. Математика, информатика. – 2013. – №3. – С. 4–15. 10. Теория систем с переменной структурой / под ред. С. В. Емельянова. – М.: Наука, 1970. 11. Кротов В.Ф. Методы и задачи оптимального управления / В. Ф. Кротов, В. И. Гурман. – М. : Наука, 1973. 12. Миллер Б. М. Оптимизация динамических систем с импульсными управлениями: монография / Б. М. Миллер, Е. Я. Рубинович. – М. : Наука, 2005. – 429 с. 13. Расина И. В. Итерационные алгоритмы оптимизации дискретно-непрерывных процессов / И. В. Расина // Автоматика и телемеханика. – 2012. – №10. – С. 3–17. 14. Lygeros J. Lecture Notes on Hybrid Systems / J. Lygeros. – University of Cambridge : Cambridge, 2003. 15. Van der Shaft A. J. An Introduction to Hybrid Dynamical Systems / A. J. Van der Shaft, Schumacher H. – Springer-Verlag : London Ltd, 2000.
Название EN
Авторы EN
Аннотация EN The systems of heterogeneous structure are widespread in practice, currently such systems are the subject of intense study by the representatives of different scientific schools and directions. These systems include systems with variable structure, discrete-continuous, logic-dynamic, hybrid and heterogeneous dynamic systems. In this article the systems of heterogeneous network structure are considered. For modelling and research the hierarchical approach is used: two-level model is created, the lower the level of which presents different controlled differential systems of homogeneous structure and the upper — network of operators, providing purposeful interaction of continuous subsystems. This model can be seen as a further development of the discrete-continuous model, proposed and investigated in a number of works of the authors. The optimal control problem is formulated, the sufficient conditions of optimality are derived — analogues of known the Krotov’s sufficient conditions of optimality, which involve resolving functions type of Krotov for each level. On the basis of these conditions and the localization principle a method of monotone iterative improvements with linear with respect to the state of the Krotov-type functions is constructed. The involvement of the second derivatives on control variables in its structure allows to take into account ravine surface structure of functional. The method like the model has a two-level structure. On the lower level appears traditional conjugated system of differential equations for the coefficients of resolving functions, whereas on the upper level, conjugated variables are determined from the linear algebraic system of equations. As an example it is considered the optimization of water protection measures in the river basin for a simplified model with an operator tree. The prototype is the lower flows of the Selenga river. For this problem a two-level network model is built and the proposed algorithm is applied. The results of calculations are represented.
The systems of heterogeneous structure are widespread in practice, currently such systems are the subject of intense study by the representatives of different scientific schools and directions. These systems include systems with variable structure, discrete-continuous, logic-dynamic, hybrid and heterogeneous dynamic systems. In this article the systems of heterogeneous network structure are considered. For modelling and research the hierarchical approach is used: two-level model is created, the lower the level of which presents different controlled differential systems of homogeneous structure and the upper — network of operators, providing purposeful interaction of continuous subsystems. This model can be seen as a further development of the discrete-continuous model, proposed and investigated in a number of works of the authors. The optimal control problem is formulated, the sufficient conditions of optimality are derived — analogues of known the Krotov’s sufficient conditions of optimality, which involve resolving functions type of Krotov for each level. On the basis of these conditions and the localization principle a method of monotone iterative improvements with linear with respect to the state of the Krotov-type functions is constructed. The involvement of the second derivatives on control variables in its structure allows to take into account ravine surface structure of functional. The method like the model has a two-level structure. On the lower level appears traditional conjugated system of differential equations for the coefficients of resolving functions, whereas on the upper level, conjugated variables are determined from the linear algebraic system of equations. As an example it is considered the optimization of water protection measures in the river basin for a simplified model with an operator tree. The prototype is the lower flows of the Selenga river. For this problem a two-level network model is built and the proposed algorithm is applied. The results of calculations are represented.
Ключевые слова EN
Литература EN 1. Anohin Ju.A., Gorstko A.B. et al. Matematicheskie modeli i metody upravlenija krupnomasshtabnym vodnym ob’ektom (in Russian). Novosibirsk, Nauka, 1987. 2. Bortakovskij A.S. Dostatochnye uslovija optimal’nosti upravlenija determinirovannymi logiko-dinamicheskimi sistemami (in Russian). Informatika. Ser. Avtomatizacija proektirovanija, 1992, vol. 2–3, pp. 72–79. 3. Vasil’ev S.N. Teorija i primenenie logiko-upravljaemyh system (in Russian). Trudy 2-oj Mezhdunarodnoj konferencii «Identifikacija sistem i zadachi upravlenija» (SICPRO’03)», 2003, pp. 23–52. 4. Gurman V.I. Optimizacija diskretnyh sistem: uchebnoe posobie (in Russian). Irkutsk, Izd-vo Irkut. un-ta, 1976, 121 p. 5. Gurman V.I., Rasina I.V. Sufficient optimality conditions in hierarchical models of nonuniform systems (in Russian). Avtomat. i telemeh., 2013, no. 12, pp. 15–30. 6. Gurman V.I. K teorii optimal’nyh diskretnyh processov (in Russian). Avtomat. i telemeh., 1973, no. 6, pp. 53–58. 7. Gurman V.I., Rasina I.V. O prakticheskih prilozhenijah dostatochnyh uslovij sil’nogo otnositel’nogo minimuma (in Russian). Avtomat. i telemeh., 1979, no. 10, pp. 12–18. 8. Gurman V.I, Rasina I.V. Discrete-continuous representations of impulsive processes in the controllable systems (in Russian). Avtomat. i telemeh., 2012, no. 8, pp. 16–29. 9. Gurman V.I., Fesko O.V., Rasina I.V. Modelirovanie vodoohrannyh meroprijatij v bassejne reki (in Russian). Vestnik BGU. Matematika, informatika, 2013, no. 3, pp. 4–15. 10. Emel’janov S.V. Teorija sistem s peremennoj strukturoj (in Russian). Moscow, Nauka, 1970. 11. Krotov V.F., Gurman V.I. Metody i zadachi optimal’nogo upravlenija [Methods and problems of optimal control]. Moscow, Nauka, 1973, 446 p. 12. Miller B.M., Rubinovich E. Ja. Optimizacija dinamicheskih sistem s impul’snymi upravlenijami [Optimization of dynamic systems with pulse control]. Moscow, Nauka, 2005, 429 p. 13. Rasina I.V. Iterative optimization algorithms for discrete-continuous processes (in Russian). Avtomat. i telemeh., 2012, no. 10, pp. 3–17. 14. Lygeros J. Lecture Notes on Hyrid Systems. University of Cambridge, Cambridge, 2003. 15. Van der Shaft A.J., Schumacher H. An Introduction to Hybrid Dynamical Systems. Springer-Verlag, London Ltd, 2000.