Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU В статье рассматриваются дробные задачи оптимизации на максимум и на минимум на произвольном допустимом множестве с выпуклой функцией в числителе и вогнутой функцией в знаменателе, имеющие много приложений в экономике и технике. Показано, что оба типа задач относятся к классу задач глобальной оптимизации. При определенных условиях эти задачи можно исследовать как задачи квазивыпуклой максимизации и минимизации. С этой целью используется разработанный ранее подход. Этот подход базируется на специальных условиях глобальной оптимальности, построенных в соответствии с теорией глобального поиска А. С. Стрекаловского. Для случая выпуклого допустимого множества исходная дробная задача минимизации сводится к псевдовыпуклой задаче минимизации, в которой всякое локальное решение является глобальным. На этой основе разработаны два приближенных численных алгоритма для решения дробных задач оптимизации на максимум и на минимум. Проведены вычислительные эксперименты по решению ряда тестовых задач рассматриваемых классов размерности до 1000 переменных.
В статье рассматриваются дробные задачи оптимизации на максимум и на минимум на произвольном допустимом множестве с выпуклой функцией в числителе и вогнутой функцией в знаменателе, имеющие много приложений в экономике и технике. Показано, что оба типа задач относятся к классу задач глобальной оптимизации. При определенных условиях эти задачи можно исследовать как задачи квазивыпуклой максимизации и минимизации. С этой целью используется разработанный ранее подход. Этот подход базируется на специальных условиях глобальной оптимальности, построенных в соответствии с теорией глобального поиска А. С. Стрекаловского. Для случая выпуклого допустимого множества исходная дробная задача минимизации сводится к псевдовыпуклой задаче минимизации, в которой всякое локальное решение является глобальным. На этой основе разработаны два приближенных численных алгоритма для решения дробных задач оптимизации на максимум и на минимум. Проведены вычислительные эксперименты по решению ряда тестовых задач рассматриваемых классов размерности до 1000 переменных.
Ключевые слова RU
Литература RU
Название EN
Авторы EN
Аннотация EN We consider fractional maximization and minimization problems with an arbitrary feasible set, with a convex function in the numerator, and with a concave function in the denominator. These problems have many applications in economics and engineering. It has been shown that both of kind of problems belongs to a class of global optimization problems. These problems can be treated as quasiconvex maximization and minimization problems under certain conditions. For such problems we use the approach developed earlier. The approach based on the special Global Optimality Conditions according to the Global Search Theory proposed by A. S. Strekalovsky. For the case of convex feasible set, we reduce the original minimization problem to pseudoconvex minimization problem showing that any local solution is global. On this basis, two approximate numerical algorithms for fractional maximization and minimization problems are developed. Successful computational experiments have been done on some test problems with a dimension up to 1000 variables.
We consider fractional maximization and minimization problems with an arbitrary feasible set, with a convex function in the numerator, and with a concave function in the denominator. These problems have many applications in economics and engineering. It has been shown that both of kind of problems belongs to a class of global optimization problems. These problems can be treated as quasiconvex maximization and minimization problems under certain conditions. For such problems we use the approach developed earlier. The approach based on the special Global Optimality Conditions according to the Global Search Theory proposed by A. S. Strekalovsky. For the case of convex feasible set, we reduce the original minimization problem to pseudoconvex minimization problem showing that any local solution is global. On this basis, two approximate numerical algorithms for fractional maximization and minimization problems are developed. Successful computational experiments have been done on some test problems with a dimension up to 1000 variables.
Ключевые слова EN
Литература EN 1. Bector C.R. Duality in Nonlinear Fractional Programming. Zeitschrift fur Operations Research, 1973, no. 17, pp. 183–193. 2. Bertsekas D.P. Nonlinear Programming. Belmont, Athena Scientific, 1999. 3. Dinkelbach W. On Nonlinear Fractional Programming. Management Science, 1978, vol. 13, no. 7, pp. 492–498. 4. Enkhbat R. Quasiconvex Programming and its Applications. Germany, Lambert Publisher, 2009. 5. Hadjisavvas N., Komlosi S., Schaible S. (eds.). Handbook of Generalized Convexity and Generalized Monotonicity. Berlin, Springer, 2005. 6. Horst R., Pardalos P.M., Thoat N.V. Introduction to Global Optimization. Netherlands, Kluwer Academic Publishers, 1995. 7. Katzner D.W. The Walrasion Vision of the Microeconomy. The University of Michigan Press, 1994. 8. Pardalos P.M., Pillips A.T. Global Optimization of Fractional Programs. Journal of Global Optimization, 1991, vol. 1, pp. 173–182. 9. Schaible S. Fractional programming II, On Dinkelbach’s Algorithm. Management Science, 1967, vol. 22, no. 8, pp. 868–873. 10. Strekalovsky A.S. Elements of Nonconvex Optimization (in Russian). Novosibirsk, Nauka, 2003.