Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU Дан обзор теорем существования точек бифуркации решений нели-нейныхоператорных уравнений в банаховых пространствах. Получены достаточные условия ветвления решений граничныхзадач для систем Власова-Максвелла. При построении асимптотики решений граничной задачи используется аналитический метод Ляпунова-Шмидта-Треногина.
Дан обзор теорем существования точек бифуркации решений нели-нейныхоператорных уравнений в банаховых пространствах. Получены достаточные условия ветвления решений граничныхзадач для систем Власова-Максвелла. При построении асимптотики решений граничной задачи используется аналитический метод Ляпунова-Шмидта-Треногина.
Ключевые слова RU
Литература RU
Название EN
Авторы EN
Аннотация EN The review of existence theorems of bifurcation points of solutions for nonlinear operator equation in Banach spaces is presented. The sufficient conditions of bifurcation of solutions of boundary-value problem for Vlasov-Maxwell system are considered. The analytical method of Lyapunov-Schmidt-Trenogin is employed.
The review of existence theorems of bifurcation points of solutions for nonlinear operator equation in Banach spaces is presented. The sufficient conditions of bifurcation of solutions of boundary-value problem for Vlasov-Maxwell system are considered. The analytical method of Lyapunov-Schmidt-Trenogin is employed.
Ключевые слова EN
Литература EN 1. Braasch P. Semilineare elliptische Differentialgleichungen und das Vlasov-Maxwell-System / P. Braasch // Dissertation, Herbert Utz Verlag Wissenschaft. -Munchen, 1997. 2. Conley C. C. Isolated invariant sets and the Morse index / C .C. Conley // CBMS. Regional Conf. Ser. Math., 38, AMS, Providence, R. I. - 1978. - Vol. 38. 3. Guo Y. Global weak solutions of the Vlasov-Maxwell system of plasma physics / Y. Guo // Commun. Math. Phys. - 1993. - Vol. 154. - P. 245-263. 4. Guo Y. On steady states in a collisionless plasma / Y. Guo, C. G. Ragazzo // Comm. Pure Appl. Math. - 1996. - Vol. 11. - P. 1145-1174. 5. Kielhofer H. A bifurcation theorem for potential operators / H. Kielhofer // J. Funct. Anal. - 1988. - Vol. 77. - P. 1-8. 6. Krasnoselskii M. A. Topological Methods in the Theory of Nonlinear Integral Equations / M. A. Krasnoselskii. - Oxford : Pergamon Press., 1964. 7. Kronecker L. It Uber systeme von functionen mehrerer variables / L. Kronecker // Monats berichte de l'Academic ed Berlin. -1869. - P. 159-198. 8. Ladyzhenskaya O. A. Linear and Nonlinear Equations of Elliptic Type / O. V. Ladyzhenskaya, N. N. Uralzeva. - M. : Nauka, 1964. 9. Steady-state solutions of the Vlasov - Maxwell system and their stability / Y. A. Markov,G. A.Rudykh,N. A.Sidorov,A.V.Sinitsyn, D. A. Tolstonogov//Acta. Appl. Math. -1992. - Vol. 28. - P. 253-293. 10. Existence of stationary solutions of the Vlasov-Maxwell system Exact solutions /Y.A.Markov, G. A. Rudykh,N.A.Sidorov,A.V.Sinitsyn//Mathematical Modelling. - 1989. - Vol. 1. - P. 95-107. 11. Rein G. Generic global solutions of the relativistic Vlasov- Maxwell system with nearly neutral innitial data / G. Rein // Commun. Math. Phys. - 1990. - Vol. 135. - P. 41-78. 12. Rudykh G. A. Stationary solutions of the system of Vlasov-Maxwell system / G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn // Doklady AN USSR. - 1988. - Vol. 33. - P.673-674. 13. Sidorov N. A. On nontrivial solutions and points of bifurcation of the Vlasov-Maxwell system / N. A. Sidorov, A. V. Sinitsyn // Doklady RAN. - 1996. - Vol. 349. - P. 26-28. 14. Sidorov N. A. On branching of solutions of the Vlasov-Maxwell system. / N. A. Sidorov, A. V. Sinitsyn // Sibirsk. Matem. Zhyrnal. - 1996. - Vol. 37. - P. 1367-1379. 15. Sidorov N. A. On bifurcating solutions of the nonlinear equations with potential branching equation / N. A. Sidorov // Doklady RAN. - 1981. -Vol. 23. - P. 193-197. 16. Sidorov N. A. Points and surfaces of bifurcation of nonlinear operators with potential branching systems / N. A. Sidorov, V. A. Trenogin : Preprint. - Irkutsk : Irkutsk Computing Center SB RAN, 1991. 17. Sidorov N. A. Investigation of points of bifurcation and continuous branches of solutions of the nonlinear equations, // N. A. Sidorov, V. A. Trenogin // In Differential and Integral Equations. - Irkutsk : Irkutsk University, 1972. - P. 216-248. 18. Trenogin V. A. Potentiality, group symmetry and bifurcation in the theory of branching equations, / V. A. Trenogin, N. A. Sidorov, B. V. Loginov // Different. and Integral Equat. - 1990. - Vol. 3. - P. 145-154. 19. Vainberg M. M. Branching Theory of Solutions of Nonlinear Equations / M. M. Vainberg, V. A. Trenogin // Monographs and Textbooks on Pure and Applied Mathematics. - Leyden : Noordhoff International Publishing, 1974. 20. Vlasov A. A. Theory of Many-particles / A. A. Vlasov. - U.S. Atomic Energy Commission, Technical Information Service Extension, 1950. 21. Lyapunov - Schmidt Methods in Nonlinear Analysis and Applications / N. A. Sidorov, B. V. Loginov, A. V. Sinitsyn, M. V. Falaleev. - Springer Publ., 2003. -(Mathematics and Its Applications ; vol. 550). 22. Sidorov N. A. Bifurcation Points of Nolinear Equations / N. A. Sidorov, V. A. Trenogin // Nonlinear Analysis and Nonlinear Differential Equations / eds. by V. A. Trenogin and A. T. Fillippov. - M. : Fizmatlit, 2003. - P. 5-49. 23. Sidorov N. A. Stationary Vlasov-Maxwell System in the Bounded Domain / N. A. Sidorov, A. V. Sinitsyn // Nonlinear Analysis and Nonlinear Differential Equations / eds. by V. A. Trenogin and A. T. Fillippov. - M. : Fizmatlit, 2003. - P. 50-84. 24. Loginov B. V. Group Symmetry of the Lyapunov-Schmidt Branching Equation and Iterative Methods in the Problem of Bifurcation Points / B. V. Loginov, N. A. Sidorov // Matematicheskii Sbornik. - 1991. - Vol. 182 (5). - P. 681-690. 25. Sidorov N. A. Explicite and Implicite Parametrization in the Construction of Branching Solutions / N. A. Sidorov // Matematicheskii Sbornik. - 1995. - Vol. 186 (2). - P. 129-140. 26. Sidorov N. A. Interlaced branching equations in the theory of non-linear equations / N. A. Sidorov, V. R. Abdullin // Mat. Sb. - 2001. - Vol. 192(7). - P. 107—124. 27. Sidorov N. A. Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov -- Maxwell system / N. A. Sidorov, A. V. Sinitsyn // Mat. Zametki. - 1997. - Vol. 62(2). - P. 268-292. 28. Sidorov N. A. Index theory in the bifurcation problem of solutions of the Vlasov-Maxwell system / N. A. Sidorov, A. V. Sinitsyn // Matem. Mod. - 1999. - Vol. 11(9). - P. 83-100. 29. Sidorov N. A. On bifurcation points of stationary Vlasov-Maxwell system with bifurcation directon / N. A. Sidorov, A. V. Sinitsyn // European consortium for mathematics in industry. Progress in industrial mathematics at ECMI-1998Conference. - Teubner, Stuttgart, 1999. - P. 292-230. 30. Trenogin V. A. Bifurcation, Potentiality, Group-Theoretical and Iterative Methods / V. A. Trenogin, N. A. Sidorov, B. V. Loginov // Zeitschrift fur angewandte Mathematik und Mechanik. - 1996. - Vol. 76. - P. 245-248. 31. Rudykh G. A. On Bifurcation Stationary Solutions of 2-Particle Vlasov - Maxwell System / G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn // Doklady Akademii Nauk SSSR. - 1989. - Vol. 304 (5). - P. 1109-1112. 32. Sidorov N. A. Successive Approximations to Solutions of Nonlinear Equations with Vector Parameter in the Irregular Case / N. A. Sidorov, D. N. Sidorov, R. Yu. Leontiev // Sibirskii Zhurnal Industrial'noi Matematiki. - 2012. - Vol. 15(1). - P. 132-137. 33. Sidorov N. A. Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind / N. A. Sidorov, D. N. Sidorov // Differ. Equ. - 2006. - Vol. 42. - P. 1312-1316. 34. Sidorov N. A. Solution of Volterra operator-integral equations in the nonregular case by the successive approximation method / N. A. Sidorov, D. N. Sidorov, A. V. Krasnik // Differ. Equ. - 2010. - Vol. 46. - P. 882-891. 35. Vedenyapin V. V. Kinetic Boltzmann, Vlasov and Related Equations / V. V. Vedenyapin, A. V. Sinitsyn, E. Dulov. - Elsevier Publ., 2011. 36. Sidorov N. A. On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhood / N. A. Sidorov, R. Yu. Leont'iev, A. I. Dreglea // Mathematical Notes. - 2012. - Vol. 91(1). - P. 90-104. 37. Sidorov N. A. Small solutions of nonlinear differential equations near branching points / N. A. Sidorov, D. N. Sidorov // Russ. Math. - 2011. - Vol. 55 (5). P. 43-50.