Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU Доказаны G-инвариантные теоремы о неявных операторах для стационарных и нестационарных задач теории бифуркаций без предположения компактности допускаемой непрерывной группы G на основе общей теоремы о наследовании симметрии нелинейной задачи уравнениями разветвления и уравнениями разветвления в корневых подпространствах.
Доказаны G-инвариантные теоремы о неявных операторах для стационарных и нестационарных задач теории бифуркаций без предположения компактности допускаемой непрерывной группы G на основе общей теоремы о наследовании симметрии нелинейной задачи уравнениями разветвления и уравнениями разветвления в корневых подпространствах.
Ключевые слова RU
Литература RU 1. Коноплева И. В. Симметрия и потенциальность уравнений разветвления в корневых подпространствах в неявно заданных стационарных и динамических бифуркационных задачах / И. В. Коноплева, Б. В. Логинов, Ю. Б. Русак // Изв. высших учеб. заведений. Сев.-Кавказ. регион. Естественные науки. - 2009. - Спецвыпуск. - C. 115-124. 2. Коноплева И. В. Симметрия и потенциальность уравнений разветвления в корневых подпространствах в неявно заданных стационарных бифуркационных задачах / И. В. Коноплева, Б. В. Логинов, Ю. Б. Русак// Аналитические методы анализа и дифференциальных уравнений АМАДЕ : тр. 5-й междунар. конф. (Беларусь, Минск, 14-19 сентября 2009 г.). - 2009.- Т. 1. - C. 90-95. 3. Коноплева И. В. Бифуркация, симметрия и косимметрия в дифференциальных уравнениях, не разрешенных относительно производной, с вариационными уравнениями разветвления / И. В. Коноплева, Б. В. Логинов// ДАН. Математика. - 2009. - T. 427, № 4. - C. 452-457; Doklady Mathematics. - 2009. - Vol. 80, N 1. - C. 541-546. 4. Логинов Б. В. Симметрия и потенциальность в общей задаче теории ветвления / Б.~В.~Логинов, И. В. Коноплева, Ю. Б. Русак // Изв. вузов. Математика. - 2006. - Т. 4(527). - C. 30-40. 5. Логинов Б. В. Общая задача теории ветвления в условиях групповой симметрии / Б. В. Логинов // Узбек. мат. журн. - 1991. - № 1. - C. 38-44. 6. Макаренко Н. И. О ветвлении решений инвариантных вариационных уравнений / Н. И. Макаренко // ДАН. Математика. - 1996. - Vol. 348, N 3. - C. 302-304. 7. Макаренко Н. И. Симметрия и косимметрия вариационных задач в теории волн / Н. И. Макаренко // Применение симметрии и косимметрии в теории бифуркаций и фазовых переходов : тр. междунар. школы-семинара (Сочи, 14-18 сентября 2001 г.). - Ростов н/Д. : Ростов. гос. ун-т, 2001. - C. 109-120. 8. Bifurcation and symmetry in differential equations non-resolved with respect to derivative / B. V. Loginov, O. V. Makeev, I. V. Konopleva, Yu. B. Rousak // ROMAI J. - 2007. - Vol. 3, N 1. - C. 151-173.
Название EN
Авторы EN
Аннотация EN On the base of the general theorem about the inheritance of nonlinear problem group symmetry by the relevant branching equation and branching equation in the root-subspace G-invariant implicit operator theorems are proved for stationary and nonstationary bifurcation problems without assumtion on compactness of allowing group.
On the base of the general theorem about the inheritance of nonlinear problem group symmetry by the relevant branching equation and branching equation in the root-subspace G-invariant implicit operator theorems are proved for stationary and nonstationary bifurcation problems without assumtion on compactness of allowing group.
Ключевые слова EN
Литература EN