Журналы
Серии
Начальная страница
Конечная страница
УДК
Раздел
Файл Скачать Изменить файл
Название RU
Авторы RU
Аннотация RU Метод параметризации решения задач оптимального управления специфицируется для задач оптимизации, содержащих связи, определяемые интегро-дифференциальными уравнениями типа Вольтерра. Приближённое решение ищется в виде вариационного сплайна.
Метод параметризации решения задач оптимального управления специфицируется для задач оптимизации, содержащих связи, определяемые интегро-дифференциальными уравнениями типа Вольтерра. Приближённое решение ищется в виде вариационного сплайна.
Ключевые слова RU
Литература RU 1. Верлань А. Ф. Интегральные уравнения: методы, алгоритмы, программы : справ. пособие / А. Ф. Верлань, В. С. Сизиков. - Киев : Наукова думка, 1986. 2. Горбунов В. К. О сведении задач оптимального управления к конечномерным / В. К. Горбунов // Журн. вычисл. математики и мат. физики. - 1978. - Т.18, № 5. - С. 1083-1095. 3. Горбунов В.К. Метод параметризации задач оптимального управления / В. К. Горбунов // Журн. вычисл. математики и мат. физики. - 1979. - Т.19, № 2. - С. 292-303. 4. Горбунов В. К. Развитие и опыт применения метода параметризации в вырожденных задачах динамической оптимизации / В. К. Горбунов, И. В. Лутошкин // Изв. РАН. Сер.: Теория и системы управления. - 2004. - № 5. - С. 67-84. 5. Дждеед М. Методы и алгоритмы оптимального управления системами, описываемыми интегро-дифференциальными уравнениями : дис. … канд. физ.-мат. наук / М. Дждеед - Тверь,2004. - 114~с. 6. Егоров А.И. Математические методы оптимизации процессов теплопроводности и диффузии / А.И. Егоров. – Фрунзе : Илим, 1990. 7. Лутошкин И. В. Метод параметризации для оптимизации систем, представляемых интегро-дифференциальными уравнениями / И. В. Лутошкин, И. Е. Дергунов // Тр. СВМО. - 2010. - Т. 12, № 4. - C. 116-126. 8. Лутошкин И. В. Метод параметризации для моделирования управляемых систем с точечным запаздыванием / И. В. Лутошкин, А. И. Тонких // Автоматизация процессов управления. - 2010. - № 4. 9. Максимов В. П. Некоторые проблемы регуляризации переопределенных краевых задач экономической динамики / В. П. Максимов // Математическое моделирование. - 1997. - Т.9, № 2. - С. 57-65. 10. Пустарнакова Ю. А. Оптимизация процесса обучения искусственной нейронной сети, описываемой системой интегро-дифференциальных уравнений / Ю. А. Пустарнакова // Методы оптимизации и их приложения : тр. 12-й Байк. Междунар. конф. : Иркутск, 2001. - Т.2. - С. 134-138. 11. Durazzi C. Nonlinear programming methods for solving optimal control problems / C. Durazzi, E. Galligani // Nonconvex Optimization and Its Applications. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models.- 2001 Kluwer Academic Publishers. Printed in the Netherlands. - P. 71-99. 12. Gorbunov V. The parameterization method in singular differential-algebraic equations / V. Gorbunov, I. Lutoshkin // Computational Science (ICCS 2003) / eds. P. Slot [et al.]. – LNCS 2658. - Springer, 2003. 13. Gorbunov V. The parameterization method in optimal control problems and differential-algebraic equations/ V. Gorbunov, I. Lutoshkin // Journal of computational and applied mathematics. - Elsevier, 2006. - Vol. 185, iss. 2. - P. 377-390. 14. Gorbunov V. K. A parametrization method for the numerical solution of singular differential equations / V. K. Gorbunov, I. V. Lutoshkin, Y. V. Martynenko // Applied Numerical Mathematics. - 2009. - N 59. - P. 639-655. 15. Kamien M. I. Optimal Control with Integral State / M. I. Kamien, E. Muller // Equations The Review of Economic Studies. - 1976. - Vol. 43, N 3. - P. 469-473. 16. Yuan Wei. The Numerical Analysis of Implicit Runge-Kutta Methods for a Certain Nonlinear Integro-Differential Equation / Wei Yuan, Tao Tang // Mathematics of Computation. - 1990. - Vol. 54, N 189. - P. 155-168.
Название EN
Авторы EN
Аннотация EN The parameterization method (It was created for solving optimal control problems) is specified for variational problems with Volterra integro-differential equations. The approximation solution is a variational spline.
The parameterization method (It was created for solving optimal control problems) is specified for variational problems with Volterra integro-differential equations. The approximation solution is a variational spline.
Ключевые слова EN
Литература EN